A346316 Composite numbers with primitive root 6.
121, 169, 289, 1331, 1681, 2197, 3481, 3721, 4913, 6241, 6889, 7921, 10609, 11449, 11881, 12769, 14641, 16129, 17161, 18769, 22801, 24649, 28561, 32041, 39601, 49729, 51529, 52441, 54289, 63001, 66049, 68921, 73441, 76729, 83521, 120409, 134689, 139129, 157609
Offset: 1
Keywords
Links
- Robert Hutchins, PrimRoot.c
Crossrefs
Programs
-
Maple
isA033948 := proc(n) if n in {1,2,4} then true; elif type(n,'odd') and nops(numtheory[factorset](n)) = 1 then true; elif type(n,'even') and type(n/2,'odd') and nops(numtheory[factorset](n/2)) = 1 then true; else false; end if; end proc: isA167794 := proc(n) if not isA033948(n) or n = 1 then false; elif numtheory[order](6,n) = numtheory[phi](n) then true; else false; end if; end proc: A346316 := proc(n) option remember; local a; if n = 1 then 121; else for a from procname(n-1)+1 do if not isprime(a) and isA167794(a) then return a; end if; end do: end if; end proc: seq(A346316(n),n=1..20) ; # R. J. Mathar, Sep 15 2021
-
Mathematica
Select[Range[160000], CompositeQ[#] && PrimitiveRoot[#, 6] == 6 &] (* Amiram Eldar, Jul 13 2021 *)
-
PARI
isok(m) = (m>1) && !isprime(m) && (gcd(m, 6)==1) && (znorder(Mod(6, m))==eulerphi(m)); \\ Michel Marcus, Aug 12 2021
Comments