A346370 Upper bound for the number of solutions of the TRINTUM cube puzzle n X 1 X 1 (cuboid formed by 4n + 2 parts) different by the set of parts, which are distinguished by the amount of surface area they contribute to the assembled cuboid.
3, 8, 10, 19, 22, 34, 38, 54, 59, 78, 84, 107, 114, 140, 148, 178, 187, 220, 230, 267, 278, 318, 330, 374, 387, 434, 448, 499, 514, 568, 584, 642, 659, 720, 738, 803, 822, 890, 910, 982, 1003, 1078, 1100, 1179, 1202, 1284, 1308, 1394, 1419, 1508, 1534, 1627
Offset: 1
Examples
a(1) = 3 because there are only 3 possible nonnegative integer solutions: 19*0 + 21*2 + 27*4 + 35*0 = 150, 0 + 2 + 4 + 0 = 6; 19*1 + 21*2 + 27*2 + 35*1 = 150, 1 + 2 + 2 + 1 = 6; 19*2 + 21*2 + 27*0 + 35*2 = 150, 2 + 2 + 0 + 2 = 6. a(2) = 8 because there are only 8 possible nonnegative integer solutions: 19*0 + 21*4 + 27*6 + 35*0 = 246, 0 + 4 + 6 + 0 = 10; 19*1 + 21*4 + 27*4 + 35*1 = 246, 1 + 4 + 4 + 1 = 10; 19*2 + 21*4 + 27*2 + 35*2 = 246, 2 + 4 + 2 + 2 = 10; 19*3 + 21*4 + 27*0 + 35*3 = 246, 3 + 4 + 0 + 3 = 10; 19*3 + 21*0 + 27*7 + 35*0 = 246, 3 + 0 + 7 + 0 = 10; 19*4 + 21*0 + 27*5 + 35*1 = 246, 4 + 0 + 5 + 1 = 10; 19*5 + 21*0 + 27*3 + 35*2 = 246, 5 + 0 + 3 + 2 = 10; 19*6 + 21*0 + 27*1 + 35*3 = 246, 6 + 0 + 1 + 3 = 10.
Links
- Mikhail Kurkov, Demonstration of the TRINTUM cube puzzle, YouTube video. [verification needed]
- Mikhail Kurkov, Parts of the TRINTUM cube puzzle, image. [verification needed]
- Mikhail Kurkov, Solutions for the cube, image. [verification needed]
- Mikhail Kurkov, Some solutions for the 2 X 1 X 1 cuboid, image. [verification needed]
- Mikhail Kurkov, Some solutions for the 3 X 1 X 1 cuboid, image. [verification needed]
- Jon Maiga, Computer-generated formulas for A346370, Sequence Machine.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).
Crossrefs
Cf. A102214.
Programs
-
Mathematica
LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {3, 8, 10, 19, 22, 34, 38}, 52] (* Robert P. P. McKone, Jul 16 2021 *)
Formula
a(n) = (n + 2)*(floor(n/2) + 1) + floor(floor(n/2)^2/4).
a(n) = A102214(floor(n/2)) + (1 + n mod 2)*(1 + floor(n/2)).
G.f.: x*(3 + 5*x - x^2 + 4*x^3 - 2*x^4 - 2*x^5 + 2*x^6)/((1 - x)^3*(1 + x)^2*(1 + x^2)). - Stefano Spezia, Jul 14 2021
Conjecture: a(n) = A008733(n-1) + A093907(n) for n > 0 (noticed by Sequence Machine). - Mikhail Kurkov, Oct 14 2021 [verification needed]
Comments