cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346403 a(1)=1; for n>1, a(n) gives the sum of the exponents in the different ways to write n as n = x^y, 2 <= x, 1 <= y.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2021

Keywords

Comments

Denoted by tau(n) in Mycielski (1951), Fehér et al. (2006), and Awel and Küçükaslan (2020).
This function depends only on the prime signature of n (see the Formula section).

Examples

			4 = 2^2, gcd(2) = 2, sigma(2) = 3, so a(4) = 3. The representations are 4^1 and 2^2, and 1 + 2 = 3.
144 = 2^4 * 3^2, gcd(4,2) = 2, sigma(2) = 3, so a(144) = 3. The representations are 144^1 and 12^2, and 1 + 2 = 3.
		

Crossrefs

Programs

  • Maple
    A253641:=proc(n) if n in {0,1} then 1 else igcd(map(i->i[2], ifactors(n)[2])[]); fi; end: seq(numtheory[sigma](A253641(n)), n=1..120); # Ridouane Oudra, Jun 04 2025
  • Mathematica
    a[n_] := DivisorSigma[1, GCD @@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
  • PARI
    a(n) = if (n==1, 1, sigma(gcd(factor(n)[,2]))); \\ Michel Marcus, Jul 16 2021

Formula

If n = Product_{i} p_i^e_i, then a(n) = sigma(gcd()).
Sum_{n>=1} (a(n)-1)/n = Pi^2/6 + 1 (= A013661 + 1) (Mycielski, 1951).
a(n) = sigma(A052409(n)), for n>1. - Ridouane Oudra, Nov 23 2024
a(n) = sigma(A253641(n)). - Ridouane Oudra, Jun 04 2025