cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346412 Triangular array read by rows: T(n,k) is the number of nilpotent n X n matrices over GF(2) having rank k, 0 <= k <= n-1, n >= 1.

Original entry on oeis.org

1, 1, 3, 1, 21, 42, 1, 105, 1470, 2520, 1, 465, 32550, 390600, 624960, 1, 1953, 605430, 36325800, 406848960, 629959680, 1, 8001, 10417302, 2768025960, 155009453760, 1680102466560, 2560156139520, 1, 32385, 172741590, 192779614440, 47809344381120, 2590958018073600, 27636885526118400, 41781748196966400
Offset: 1

Views

Author

Geoffrey Critzer, Jul 15 2021

Keywords

Examples

			Array begins
  1;
  1,    3;
  1,   21,     42;
  1,  105,   1470,     2520;
  1,  465,  32550,   390600,    624960;
  1, 1953, 605430, 36325800, 406848960, 629959680
T(2,0) = 1 because the zero matrix has rank 0.
T(2,1) = 3 because {{0,0},{1,0}}, {{0,1},{0,0}}, {{1,1},{1,1}} have rank 1.
		

References

  • G. Lusztig, A note on counting nilpotent matrices of fixed rank, Bull. London Math. Soc. v.8 (1976), no. 1, 77--80; MR0407050.

Crossrefs

Cf. A134057 (column k=1), A083402 (main diagonal), A053763 (row sums).

Programs

  • Mathematica
    nn = 10; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] :=Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] :=  Product[Product[
       q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    g[u_, v_] := Total[Map[v^(Total[#] - Length[#]) u^Total[#]/aut[1, #] &,
       Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];Map[Select[#, # > 0 &] &,Drop[Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[
         Series[g[u, v], {u, 0, nn}], {u, v}], 1]] // Grid

Formula

T(n,n-k) = A002884(n)*Product_{i=k..n-1}(1-1/2^i)/(A002884(k)*2^(n-k)*Product_{i=1..n-k}(1-1/2^i)) Theorem 6 in Fulman link. - Geoffrey Critzer, Dec 23 2024