A346416 Primes p such that the greatest perimeter of a triangle with prime sides including p and the next prime is prime.
5, 11, 13, 17, 19, 37, 41, 43, 47, 59, 71, 89, 103, 109, 113, 137, 139, 149, 163, 167, 173, 179, 181, 241, 269, 313, 337, 379, 389, 401, 491, 499, 521, 547, 557, 569, 587, 599, 607, 613, 617, 631, 643, 673, 677, 701, 739, 773, 787, 811, 839, 877, 883, 887, 929, 941, 953, 971, 977, 983, 1019, 1021
Offset: 1
Keywords
Examples
a(3) = 13 is a term because the next prime is 17, the greatest prime < 13+17 is 29, and 13+17+29 = 59 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A096215.
Programs
-
Maple
f:= proc(n) local p,q,r,s; p:= ithprime(n); q:= ithprime(n+1); r:= prevprime(p+q); s:= p+q+r; if isprime(p+q+r) then return p fi end proc: map(f, [$1..500]);
-
Mathematica
Select[Partition[Prime[Range[200]],2,1],PrimeQ[Total[#]+NextPrime[Total[#],-1]]&][[;;,1]] (* Harvey P. Dale, Dec 11 2024 *)
Comments