A346424 Number of partitions of the 2n-multiset {0,...,0,1,2,...,n}.
1, 2, 11, 74, 592, 5317, 52902, 572402, 6670707, 83025806, 1096662664, 15292076689, 224145880470, 3440981816071, 55153081768896, 920494136057715, 15959177281931953, 286834809549486462, 5334308665713522860, 102476857445135062727, 2030589375575413246579
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 2: 01, 0|1. a(2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..509
Crossrefs
Programs
-
Maple
s:= proc(n) option remember; expand(`if`(n=0, 1, x*add(s(n-j)*binomial(n-1, j-1), j=1..n))) end: S:= proc(n, k) option remember; coeff(s(n), x, k) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0, combinat[numbpart](n), add(b(n-j, i-1), j=0..n))) end: a:= n-> add(S(n, j)*b(n, j), j=0..n): seq(a(n), n=0..21);
-
Mathematica
s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]]; S[n_, k_] := S[n, k] = Coefficient[s[n], x, k]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]]; a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)
Comments