cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346431 Primes p such that A007663(i) is divisible by Product_{k=1..7} A343763(k), where i is the index of p in A000040.

Original entry on oeis.org

157, 313, 547, 859, 937, 1093, 1171, 1249, 1327, 1483, 1873, 1951, 2029, 2341, 2887, 3121, 3433, 3511, 3823, 4057, 4447, 4603, 4759, 4993, 5227, 5851, 6007, 6163, 6397, 6553, 6709, 7177, 7333, 7411, 7489, 7723, 7879, 8269, 8581, 8737, 8893, 8971, 9049, 9127
Offset: 1

Views

Author

Felix Fröhlich, Jul 18 2021

Keywords

Comments

Differs from A142159 in that 79, 2731, 8191, ... are not in this sequence.
Includes the two known Wieferich primes 1093 and 3511 (cf. A001220).
Is this a supersequence of A001220, i.e., are all Wieferich primes in the sequence?
Is p-1 always divisible by 78 = 2 * 3 * 13?
For the initial primes p in this sequence, p-1 has some interesting digit patterns in various bases, as illustrated in the following table:
p | b | base-b expansion of p-1
--------------------------------------
157 | 5 | 1111
313 | 5 | 2222
547 | 3 | 202020
547 | 4 | 20202
547 | 5 | 4141
547 | 9 | 666
547 | 16 | 222
859 | 2 | 1101011010
937 | 3 | 1021200 (nearly palindromic)
937 | 4 | 32220 (nearly palindromic)
937 | 5 | 12221
1093 | 2 | 10001000100 (periodic)
1093 | 3 | 1111110 (nearly palindromic/repdigit)
1093 | 4 | 101010
1093 | 5 | 13332 (nearly palindromic)
1093 | 16 | 444
1171 | 2 | 10010010010 (periodic)
1171 | 5 | 14140 (nearly palindromic and periodic)
1171 | 8 | 2222
1249 | 3 | 1201020 (nearly palindromic)
1249 | 5 | 14443 (nearly palindromic)
1327 | 5 | 20301 (nearly palindromic)

Examples

			(2^(157-1)-1)/157 is divisible by 3 * 7 * 79 * 2731 * 8191 * 121369 * 22366891, so 157 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    fq(n) = (2^(n-1)-1)/n
    my(prd=3*7*79*2731*8191*121369*22366891); forprime(p=1, , if(Mod(fq(p), prd)==0, print1(p, ", ")))