cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346491 Number of factorizations of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 2, 2, 2, 1, 29, 1, 2, 5, 5, 1, 21, 2, 15, 5, 2, 1, 719, 4, 2, 15, 15, 1, 296, 2, 15, 5, 2, 5, 4323, 5, 5, 5, 203, 2, 296, 1, 52, 52, 5, 1, 32653, 5, 135, 5, 15, 2, 1315, 15, 566, 52, 5, 2, 270920, 2, 5, 52, 203, 5, 296, 5, 52, 52, 877, 2
Offset: 1

Views

Author

Alois P. Heinz, Jul 19 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
          sort(map(i-> i[2], ifactors(combinat[fibonacci](n))[2]), `>`))$2)
        end:
    seq(a(n), n=1..80);
  • Mathematica
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, If[1 < # <= m, T[n/#, #], 0]&];
    f[n_] := T[n, n];
    a[n_] := f[Fibonacci[n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 119}] (* Jean-François Alcover, Sep 08 2022 *)

Formula

a(n) = A001055(A000045).
a(n) = A001055(A046523(A000045(n))).
a(n) = A001055(A278245(n)).
a(n) = 1 <=> n in { A001605 } union {1,2}.
a(n) = 2 <=> n in { A072381 }.