A346500 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0
Examples
A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2. Square array A(n,k) begins: 1, 1, 2, 5, 15, 52, 203, 877, ... 1, 2, 4, 11, 36, 135, 566, 2610, ... 2, 4, 9, 26, 92, 371, 1663, 8155, ... 5, 11, 26, 66, 249, 1075, 5133, 26683, ... 15, 36, 92, 249, 712, 3274, 16601, 91226, ... 52, 135, 371, 1075, 3274, 10457, 56135, 325269, ... 203, 566, 1663, 5133, 16601, 56135, 198091, 1207433, ... 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ... ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Columns (or rows) k=0-10 give: A000110, A035098, A322764, A322768, A346881, A346882, A346883, A346884, A346885, A346886, A346887.
Main diagonal gives A020555.
First upper (or lower) diagonal gives A322766.
Second upper (or lower) diagonal gives A322767.
Antidiagonal sums give A346490.
A(2n,n) gives A322769.
Programs
-
Maple
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+ `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0, g(n/d, d)), d=divisors(n) minus {1, n})) end: p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end: A:= (n, k)-> g(p(n)*p(k)$2): seq(seq(A(n, d-n), n=0..d), d=0..10); # second Maple program: b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1), j=1..n)) end: A:= proc(n, k) option remember; `if`(n
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]]; A[n_, k_] := A[n, k] = If[n < k, A[k, n], If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]* Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)
Comments