cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346500 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0

Views

Author

Alois P. Heinz, Jul 20 2021

Keywords

Comments

Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i); A(2,2) = 9: 2*2*3*3, 3*3*4, 6*6, 2*3*6, 4*9, 2*2*9, 3*12, 2*18, 36.

Examples

			A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.
Square array A(n,k) begins:
    1,    1,    2,     5,    15,     52,     203,     877, ...
    1,    2,    4,    11,    36,    135,     566,    2610, ...
    2,    4,    9,    26,    92,    371,    1663,    8155, ...
    5,   11,   26,    66,   249,   1075,    5133,   26683, ...
   15,   36,   92,   249,   712,   3274,   16601,   91226, ...
   52,  135,  371,  1075,  3274,  10457,   56135,  325269, ...
  203,  566, 1663,  5133, 16601,  56135,  198091, 1207433, ...
  877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ...
  ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000110, A035098, A322764, A322768, A346881, A346882, A346883, A346884, A346885, A346886, A346887.
Main diagonal gives A020555.
First upper (or lower) diagonal gives A322766.
Second upper (or lower) diagonal gives A322767.
Antidiagonal sums give A346490.
A(2n,n) gives A322769.

Programs

  • Maple
    g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
         `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
            g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
    A:= (n, k)-> g(p(n)*p(k)$2):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n
    				
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = If[n < k, A[k, n],
         If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]*
         Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)

Formula

A(n,k) = A001055(A002110(n)*A002110(k)).
A(n,k) = A(k,n).
A(n,k) = A322765(abs(n-k),min(n,k)).