A346508 Positive integers k such that 10*k+1 is equal to the product of two integers greater than 1 and ending with 1 (A346507).
12, 23, 34, 44, 45, 56, 65, 67, 78, 86, 89, 96, 100, 107, 111, 122, 127, 128, 133, 144, 149, 155, 158, 166, 168, 170, 177, 188, 189, 191, 199, 209, 210, 212, 220, 221, 232, 233, 243, 250, 251, 254, 260, 265, 275, 276, 282, 287, 291, 296, 298, 309, 311, 313, 317
Offset: 1
Examples
107 is a term because 21*51 = 1071 = 107*10 + 1.
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a={}; For[n=1, n<=350, n++, For[k=1, k
Max[10a+1], AppendTo[a, n]]]]; a -
Python
def aupto(lim): return sorted(set(a*b//10 for a in range(11, 10*lim//11+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim)) print(aupto(318)) # Michael S. Branicky, Aug 21 2021
Formula
a(n) = (A346507(n) - 1)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A346507(n) - 1)/10 and lim_{n->infinity} A346507(n)/A346507(n-1) = 1. - Stefano Spezia, Aug 21 2021