A346519 Number of partitions of the 2n-multiset {0,...,0,1,2,...,n} into distinct multisets.
1, 2, 9, 59, 442, 3799, 36332, 379831, 4288933, 51867573, 667168482, 9076862555, 130018298663, 1953284957029, 30675458303547, 502166867458649, 8547908294767932, 150965367603029126, 2760941474553823577, 52196915577464262360, 1018499212583077293854
Offset: 0
Keywords
Examples
a(0) = 1: {}. a(1) = 2: 01, 0|1. a(2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..510
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: s:= proc(n) option remember; expand(`if`(n=0, 1, x*add(s(n-j)*binomial(n-1, j-1), j=1..n))) end: S:= proc(n, k) option remember; coeff(s(n), x, k) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0, g(n), add(b(n-j, i-1), j=0..n))) end: a:= n-> add(S(n, j)*b(n, j), j=0..n): seq(a(n), n=0..20);
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]]; S[n_, k_] := S[n, k] = Coefficient[s[n], x, k]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]]; a[n_] := Sum[S[n, j]*b[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 06 2022, after Alois P. Heinz *)
Comments