A346535 Numbers obtained by adding the first k repdigits that consist of the same digit, for some number k.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, 123, 246, 369, 492, 615, 738, 861, 984, 1107, 1234, 2468, 3702, 4936, 6170, 7404, 8638, 9872, 11106, 12345, 24690, 37035, 49380, 61725, 74070, 86415, 98760, 111105, 123456, 246912, 370368, 493824
Offset: 1
Examples
a(1) = 1, a(2) = 2, a(3) = 3, ... a(9) = 9; a(10) = 1 + 11 = 12, a(11) = 2 + 22 = 24, a(12) = 3 + 33 = 36, ... a(18) = 9 + 99 = 108; a(19) = 1 + 11 + 111 = 123, a(20) = 2 + 22 + 222 = 246, a(21) = 3 + 33 + 333 = 369, ... a(27) = 9 + 99 + 999 = 1107; ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,-21,0,0,0,0,0,0,0,0,10).
Programs
-
Mathematica
Table[m*(10^(1+k)-10-9*k)/81,{k,6},{m,9}]//Flatten (* Stefano Spezia, Aug 17 2021 *)
-
Python
def sumRepUnits(n): # A014824 return ((10**n-1)*10 - 9*n)//81 def a(n): # A346535 d = 1 + (n-1)%9 m = 1 + (n-1)//9 return d*sumRepUnits(m) for n in range(1,1000): print(n, a(n))
Formula
a(n) = d*A014824(m) where d = (n-1) mod 9 + 1 and m = ceiling(n/9). - Jon E. Schoenfield, Jul 22 2021
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/((1 - x^9)^2*(1 - 10*x^9)). - Stefano Spezia, Jul 26 2021