cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346535 Numbers obtained by adding the first k repdigits that consist of the same digit, for some number k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 60, 72, 84, 96, 108, 123, 246, 369, 492, 615, 738, 861, 984, 1107, 1234, 2468, 3702, 4936, 6170, 7404, 8638, 9872, 11106, 12345, 24690, 37035, 49380, 61725, 74070, 86415, 98760, 111105, 123456, 246912, 370368, 493824
Offset: 1

Views

Author

Jwalin Bhatt, Jul 22 2021

Keywords

Examples

			a(1) = 1,
a(2) = 2,
a(3) = 3,
...
a(9) = 9;
a(10) = 1 + 11 = 12,
a(11) = 2 + 22 = 24,
a(12) = 3 + 33 = 36,
...
a(18) = 9 + 99 = 108;
a(19) = 1 + 11 + 111 = 123,
a(20) = 2 + 22 + 222 = 246,
a(21) = 3 + 33 + 333 = 369,
...
a(27) = 9 + 99 + 999 = 1107; ...
		

Crossrefs

Programs

  • Mathematica
    Table[m*(10^(1+k)-10-9*k)/81,{k,6},{m,9}]//Flatten (* Stefano Spezia, Aug 17 2021 *)
  • Python
    def sumRepUnits(n): # A014824
      return ((10**n-1)*10 - 9*n)//81
    def a(n): # A346535
      d = 1 + (n-1)%9
      m = 1 + (n-1)//9
      return d*sumRepUnits(m)
    for n in range(1,1000):
      print(n, a(n))

Formula

a(n) = d*A014824(m) where d = (n-1) mod 9 + 1 and m = ceiling(n/9). - Jon E. Schoenfield, Jul 22 2021
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/((1 - x^9)^2*(1 - 10*x^9)). - Stefano Spezia, Jul 26 2021