A346541 Number of walks on square lattice from (n,2n) to (0,0) using steps that decrease the Euclidean distance to the origin and increase the Euclidean distance to (n,2n) and that change each coordinate by at most 1.
1, 5, 173, 6273, 327304, 19662204, 1331125733, 97103842536, 7486548949630, 600824064355643, 49716537270181030, 4212436222856773156, 363673201239600512658, 31874623637580787947172, 2828388650238276648013964, 253555200931317108300020394, 22925898959060646660438636660
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Alois P. Heinz, Animation of a(2) = 173 walks
- Wikipedia, Counting lattice paths
- Wikipedia, Self-avoiding walk
Crossrefs
Cf. A346540.
Programs
-
Maple
s:= proc(n) option remember; `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1))) end: b:= proc(l, v) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`( add(i^2, i=h)
add(i^2, i=v-l) , b(h, v), 0))(l+x), x=s(n))))(nops(l)) end: a:= n-> b([n, 2*n]$2): seq(a(n), n=0..20); -
Mathematica
s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]]; b[l_, v_] := b[l, v] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l + x}, If[h.h
(v-l).(v-l), b[h, v], 0]], {x, s[n]}]]]; a[n_] := b[{n, 2n}, {n, 2n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)
Comments