cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346548 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^exp(-x).

Original entry on oeis.org

1, 1, 2, 6, 42, 175, 2015, 10843, 157388, 1240377, 20118077, 172029231, 4052166250, 36360150385, 952965601471, 11194257455977, 316421367496344, 3722989943371217, 134504815853036649, 1641201826969536379, 67298415781492985366, 935342610632498431241, 40176825083871581430723
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 16 2021

Keywords

Comments

Exponential transform of A002743.
The first negative term is a(71) = -1.2234788... * 10^104.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^Exp[-x], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Exp[-x] Sum[DivisorSigma[1, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    A002743[n_] := Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[1, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002743[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp( exp(-x) * Sum_{k>=1} sigma(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002743(k) * a(n-k).