A346552 4-Sondow numbers: numbers k such that p^s divides k/p + 4 for every prime power divisor p^s of k.
1, 5, 8, 24, 168, 7224, 188232, 8858009688, 209981586408
Offset: 1
Links
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
Crossrefs
Programs
-
Mathematica
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]] Select[Range[10000000],Sondow[4][#]&]
-
PARI
isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 4) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022
Extensions
a(8)-a(9) verified by Martin Ehrenstein, Jan 21 2022
Comments