A346553 5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.
1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1
Links
- Github, Jonathan Sondow (1943 - 2020)
- J. M. Grau, A. M. Oller-Marcén and D. Sadornil, On µ-Sondow Numbers, arXiv:2111.14211 [math.NT], 2021.
- J. M. Grau, A. M. Oller-Marcen and J. Sondow, On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n, arXiv:1309.7941 [math.NT], 2013-2014.
Crossrefs
Programs
-
Mathematica
Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]] Select[Range[10^7], Sondow[5][#]&]
-
PARI
isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022
Extensions
a(9)-a(10) from Martin Ehrenstein, Jan 19 2022
Comments