cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346553 5-Sondow numbers: numbers k such that p^s divides k/p + 5 for every prime power divisor p^s of k.

Original entry on oeis.org

1, 2, 3, 14, 66, 1974, 307146, 3270666, 42404405538, 318501038226
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A235137(k) == 5 (mod k).
A positive integer k is a 5-Sondow number if satisfies any of the following equivalent properties:
1) p^s divides k/p + 5 for every prime power divisor p^s of k.
2) 5/k + Sum_{prime p|k} 1/p is an integer.
3) 5 + Sum_{prime p|k} k/p == 0 (mod k).
4) Sum_{i=1..k} i^phi(k) == 5 (mod k).

Crossrefs

(-1) and (-2) -Sondow numbers: A326715, A330069.
1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557.

Programs

  • Mathematica
    Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]}, IntegerQ[mu/n+Sum[1/fa[[i, 1]], {i, Length[fa]}]]]
    Select[Range[10^7], Sondow[5][#]&]
  • PARI
    isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 5) % p^j, return(0)));); return(1);} \\ Michel Marcus, Jan 17 2022

Extensions

a(9)-a(10) from Martin Ehrenstein, Jan 19 2022