A346575 a(n) is the number of 6-tuples (a_1,a_2,a_3,a_4,a_5,a_6) having all terms in {1,...,n} such that there exists a tetrahedron ABCD with those edge-lengths.
0, 1, 43, 327, 1792, 6139, 17607, 43291, 96142, 193149, 362383, 638533, 1075110, 1733023, 2700217, 4076133, 5994310, 8611819, 12119139, 16738861, 22746004, 30449013, 40212679, 52452031, 67651170, 86348035, 109166881, 136796079, 170024038, 209707144, 256814946, 312433795
Offset: 0
Keywords
Examples
For a(2)=43 the solutions are (1,1,1,1,1,1), all 20 permutations of (1,1,1,2,2,2), all 15 permutations of (1,1,2,2,2,2), all 6 permutations of (1,2,2,2,2,2) and (2,2,2,2,2,2).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..52
- Lucas A. Brown, Python program.
- Giovanni Corbelli, Visual Basic routine generating number of tetrahedra.
- Karl Wirth and Andre Dreiding, Edge lengths determining tetrahedrons, Elemente der Mathematik, 64 (2009), 160-170.
Programs
-
Python
# See LINKS.
Formula
Conjecture: Limit_{n->oo} a(n)/n^6 exists and is approximately 0.33817.
Extensions
a(21)-a(31) from Lucas A. Brown, Mar 13 2024
Comments