A346617 Irregular triangle T(n,m) read by rows (n >= 1, 1 <= m <= Max(A001221([1..n]))): T(n,m) = number of integers in [1,n] with m distinct prime factors.
0, 1, 2, 3, 4, 4, 1, 5, 1, 6, 1, 7, 1, 7, 2, 8, 2, 8, 3, 9, 3, 9, 4, 9, 5, 10, 5, 11, 5, 11, 6, 12, 6, 12, 7, 12, 8, 12, 9, 13, 9, 13, 10, 14, 10, 14, 11, 15, 11, 15, 12, 16, 12, 16, 12, 1, 17, 12, 1, 18, 12, 1, 18, 13, 1, 18, 14, 1, 18, 15, 1, 18, 16, 1, 19, 16, 1, 19, 17, 1
Offset: 1
Examples
Rows 1 through 12 are: 1 [0] 2 [1] 3 [2] 4 [3] 5 [4] 6 [4, 1] 7 [5, 1] 8 [6, 1] 9 [7, 1] 10 [7, 2] 11 [8, 2] 12 [8, 3] 13 [9, 3]
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 52-56.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, Vol. 1, p. 211, Eq. (5).
Links
- Alois P. Heinz, Rows n = 1..10000, flattened
- N. J. A. Sloane, The first 100 rows.
Crossrefs
Programs
-
Maple
omega := proc(n) nops(numtheory[factorset](n)) end proc: # # A001221 A:=Array(1..20,0); ans:=[[0]]; mx:=0; for n from 2 to 100 do k:=omega(n); if k>mx then mx:=k; fi; A[k]:=A[k]+1; ans:=[op(ans),[seq(A[i],i=1..mx)]]; od: ans; # second Maple program: b:= proc(n) option remember; `if`(n=0, 0, b(n-1)+x^nops(ifactors(n)[2])) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..max(1, degree(p))))(b(n)): seq(T(n), n=1..40); # Alois P. Heinz, Aug 19 2021
-
Mathematica
T[n_] := If[n == 1, {0}, Range[n] // PrimeNu // Tally // Rest // #[[All, 2]]&]; Array[T, 40] // Flatten (* Jean-François Alcover, Mar 08 2022 *)
Formula
For fixed k, T(n,k) ~ (1/(k-1)!) * n * (log log n)^(k-1) / log n [Landau].
From Alois P. Heinz, Aug 19 2021: (Start)
Sum_{k>=1} k * T(n,k) = A013939(n).
Sum_{k>=1} k^2 * T(n,k) = A069811(n).
Sum_{k>=1} (-1)^(k-1) * T(n,k) = A123066(n).
Sum_{k>=1} (-1)^k * T(n,k) = -1 + A174863(n).
Sum_{k>=1} T(n,k) = n - 1. (End)
Comments