cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346627 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * A(x)^3.

Original entry on oeis.org

1, 0, 1, 2, 7, 23, 82, 300, 1129, 4334, 16914, 66899, 267586, 1080516, 4398850, 18035084, 74402361, 308624282, 1286428765, 5385578256, 22635057148, 95471113565, 403983783772, 1714494024947, 7295949019114, 31124885587680, 133085594104222, 570266646942488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Inverse binomial transform of A200753.

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = 1/(1 + x) + x A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = (-1)^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 27}]
    Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 27}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 + x)^(2*k+1).
a(n) = (-1)^n + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+k,n-k) * binomial(3*k,k) / (2*k + 1).
a(n) ~ sqrt(198 + 38*sqrt(33)) * (19 + 3*sqrt(33))^n / (9 * sqrt(Pi) * n^(3/2) * 2^(3*n + 3)). - Vaclav Kotesovec, Jul 30 2021