A346634 Number of strict odd-length integer partitions of 2n + 1.
1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0
Keywords
Examples
The a(0) = 1 through a(7) = 14 partitions: (1) (3) (5) (7) (9) (11) (13) (15) (4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4) (5,3,1) (6,3,2) (6,5,2) (7,5,3) (6,2,1) (6,4,1) (7,4,2) (7,6,2) (7,3,1) (7,5,1) (8,4,3) (8,2,1) (8,3,2) (8,5,2) (8,4,1) (8,6,1) (9,3,1) (9,4,2) (10,2,1) (9,5,1) (10,3,2) (10,4,1) (11,3,1) (12,2,1) (5,4,3,2,1)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1)))) end: a:= n-> b(2*n+1$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Mathematica
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]
Extensions
More terms from Alois P. Heinz, Aug 05 2021