A346654 a(n) = Bell(2*n,n).
1, 2, 94, 12351, 3188340, 1362057155, 869725707522, 775929767223352, 921839901090823112, 1406921223577401454239, 2682502220690005671884710, 6248503930824315386034050253, 17460431497766377837983159782652, 57647207262184459310081410522242310, 222006095854149044448961838142906736554
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..198
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, (1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k) end: a:= n-> b(2*n, n): seq(a(n), n=0..14); # Alois P. Heinz, Jul 27 2021
-
Mathematica
Table[BellB[2*n, n], {n, 0, 20}]
Formula
a(n) ~ 4^n * exp((2/LambertW(2) - 3)*n) * n^(2*n) / (sqrt(1 + LambertW(2)) * LambertW(2)^(2*n)).