A346659 Primes that are not of the form p*q +- 2 where p and q are primes (not necessarily distinct).
3, 5, 29, 43, 61, 73, 101, 103, 107, 137, 149, 151, 173, 191, 193, 197, 227, 229, 241, 271, 277, 281, 283, 313, 347, 349, 421, 431, 433, 457, 461, 463, 523, 569, 601, 607, 617, 619, 641, 643, 659, 661, 727, 821, 823, 827, 857, 859, 883, 929, 1019, 1021, 1031
Offset: 1
Keywords
Examples
2 is not a term because 2 = 2*2 - 2. 3 is a term because neither 1 (3-2) nor 5 (3+2) is a product of two primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A207526 (complementary sequence).
Programs
-
Maple
q:= n-> andmap(x-> numtheory[bigomega](x)<>2, [n-2, n+2]): select(q, [ithprime(i)$i=1..200])[]; # Alois P. Heinz, Jul 30 2021
-
Mathematica
Select[Range[3, 1000], PrimeQ[#] && PrimeOmega[# - 2] != 2 && PrimeOmega[# + 2] != 2 &] (* Amiram Eldar, Jul 29 2021 *)
-
Python
from sympy import factorint, primerange def semiprime(n): return sum(e for e in factorint(n).values()) == 2 def ok(p): return not semiprime(p-2) and not semiprime(p+2) def aupto(limit): return list(filter(ok, primerange(1, limit+1))) print(aupto(1031)) # Michael S. Branicky, Jul 29 2021
Extensions
More terms from Michael S. Branicky, Jul 29 2021
Comments