cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346659 Primes that are not of the form p*q +- 2 where p and q are primes (not necessarily distinct).

Original entry on oeis.org

3, 5, 29, 43, 61, 73, 101, 103, 107, 137, 149, 151, 173, 191, 193, 197, 227, 229, 241, 271, 277, 281, 283, 313, 347, 349, 421, 431, 433, 457, 461, 463, 523, 569, 601, 607, 617, 619, 641, 643, 659, 661, 727, 821, 823, 827, 857, 859, 883, 929, 1019, 1021, 1031
Offset: 1

Views

Author

Marcin Barylski, Jul 27 2021

Keywords

Comments

Conjecture: this sequence is infinite.

Examples

			2 is not a term because 2 = 2*2 - 2.
3 is a term because neither 1 (3-2) nor 5 (3+2) is a product of two primes.
		

Crossrefs

Cf. A207526 (complementary sequence).

Programs

  • Maple
    q:= n-> andmap(x-> numtheory[bigomega](x)<>2, [n-2, n+2]):
    select(q, [ithprime(i)$i=1..200])[];  # Alois P. Heinz, Jul 30 2021
  • Mathematica
    Select[Range[3, 1000], PrimeQ[#] && PrimeOmega[# - 2] != 2 && PrimeOmega[# + 2] != 2 &] (* Amiram Eldar, Jul 29 2021 *)
  • Python
    from sympy import factorint, primerange
    def semiprime(n): return sum(e for e in factorint(n).values()) == 2
    def ok(p): return not semiprime(p-2) and not semiprime(p+2)
    def aupto(limit): return list(filter(ok, primerange(1, limit+1)))
    print(aupto(1031)) # Michael S. Branicky, Jul 29 2021

Extensions

More terms from Michael S. Branicky, Jul 29 2021