cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346677 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) that can be decomposed as the direct sum of k cyclic matrices, 0<=k<=n, n>=0.

Original entry on oeis.org

1, 0, 2, 0, 8, 8, 0, 132, 322, 58, 0, 10752, 36412, 17570, 802, 0, 3185280, 16923024, 11693324, 1731970, 20834, 0, 5279662080, 26989750656, 30003846992, 6109974636, 335190786, 1051586, 0, 28343145922560, 196717668747264, 247267921788288, 84586214764240, 5906325116460, 128574848514, 102233986
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2021

Keywords

Examples

			Triangle begins:
  1;
  0,       2;
  0,       8,        8;
  0,     132,      322,       58;
  0,   10752,    36412,    17570,     802;
  0, 3185280, 16923024, 11693324, 1731970, 20834;
  ...
		

Crossrefs

Cf. A002416 (row sums) A132186 (main diagonal).

Programs

  • Mathematica
    nn = 6; q = 2; b[p_, i_] := Count[p, i];
    d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];
    aut[deg_, p_] :=  Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1, Total[p]}];
    A001037 = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}];
    g[u_, v_, deg_] :=  Total[Map[v^Length[#] u^(deg Total[#])/aut[deg, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]];
    Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, v, deg]^A001037[[deg]], {deg, 1, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid