A346694 Primitive terms of A051487.
6, 150, 726, 750, 2310, 3174, 3750, 5046, 5874, 6090, 6930, 7986, 10086, 10374, 11550, 16854, 18270, 18750, 20790, 24378, 31122, 34650, 41334, 42630, 47526, 54810, 57750, 62370, 63618, 64614, 73002, 76614, 87846, 93366, 93750, 102966, 103950, 127890, 140910, 146334, 146370, 164430
Offset: 1
Keywords
Examples
a(1) = 6 because every k = 3*2^m, m >= 1 satisfies phi(k) = phi(k-phi(k)) = 2^m, and k_0 = 6 is the smallest term of this subsequence of A051487. a(2) = 150 because every k = 3*5^2*2^m, m >= 1 satisfies phi(k) = phi(k-phi(k)) = 5*2^(m+2) and k_0 = 150 is the smallest term of this subsequence of A051487. a(3) = 726 because every k = 3*11^2*2^m, m >= 1 satisfies phi(k) = phi(k-phi(k)) = 5*11*2^(m+1) and k_0 = 726 is the smallest term of this subsequence of A051487. a(5) = 2310 because every k = 3*5*7*11*2^m, m >= 1 satisfies phi(k) = phi(k-phi(k)) = 3*5*2^(m+4) and k_0 = 2310 is the smallest term of this subsequence of A051487.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B42, p. 150.
Programs
-
Maple
with(numtheory): for q from 0 to 13800 do m := 6*(2*q+1); if phi(m) = phi(m-phi(m)) then print(m); else fi; od:
-
PARI
isdouble(n, list)= {my(v = Vecrev(list)); for(k=1, #v, if (n == 2*v[k], return(1)););} lista(nn) = {my(list = List(), listp = List()); for (n=3, nn, if (eulerphi(n) == eulerphi(n - eulerphi(n)), if (!isdouble(n, list), listput(listp, n)); listput(list, n););); Vec(listp);} \\ Michel Marcus, Aug 06 2021
Comments