A346700 Sum of the even bisection (even-indexed parts) of the integer partition with Heinz number n.
0, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 3, 1, 2, 1, 0, 2, 0, 2, 2, 1, 3, 3, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 0, 2, 4, 3, 2, 1, 0, 3, 3, 2, 2, 1, 0, 3, 0, 1, 2, 3, 3, 2, 0, 1, 2, 3, 0, 3, 0, 1, 3, 1, 4, 2, 0, 2, 4, 1, 0, 3, 3, 1, 2, 2, 0, 3, 4, 1, 2, 1, 3, 3, 0, 4, 2, 4, 0, 2, 0, 2, 3
Offset: 1
Keywords
Examples
The partition with Heinz number 1100 is (5,3,3,1,1), so a(1100) = 3 + 1 = 4. The partition with Heinz number 2100 is (4,3,3,2,1,1), so a(2100) = 3 + 2 + 1 = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10201
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Index entries for sequences related to Heinz numbers
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Total[Last/@Partition[Reverse[primeMS[n]],2]],{n,100}]
-
PARI
A346700(n) = if(1==n,0,my(f=factor(n),s=0,p=0); forstep(k=#f~,1,-1,while(f[k,2], s += (p%2)*primepi(f[k,1]); f[k,2]--; p++)); (s)); \\ Antti Karttunen, Sep 21 2021
Formula
Extensions
Data section extended up to 105 terms by Antti Karttunen, Sep 21 2021
Comments