A329888 a(n) = A329900(A329602(n)); Heinz number of the even bisection (even-indexed parts) of the integer partition with Heinz number n.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 5, 2, 3, 2, 1, 3, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 7, 5, 3, 2, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 3, 8, 5, 3, 1, 2, 3, 5, 1, 6, 1, 2, 5, 2, 7, 3, 1, 4, 9, 2, 1, 6, 5, 2, 3, 4, 1, 6, 7, 2, 3, 2, 5, 8, 1, 7, 3, 10, 1, 3, 1, 4, 5
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Aug 15 2021: (Start) The list of all numbers with image 12 and their corresponding prime factors begins: 144: (3,3,2,2,2,2) 216: (3,3,3,2,2,2) 240: (5,3,2,2,2,2) 288: (3,3,2,2,2,2,2) 336: (7,3,2,2,2,2) 360: (5,3,3,2,2,2) (End) The positions from the left are indexed as 1, 2, 3, ..., etc, so e.g., for 240 we pick the second, the fourth and the sixth prime factor, 3, 2 and 2, to obtain a(240) = 3*2*2 = 12. For 288, we similarly pick the second (3), the fourth (2) and the sixth (2) to obtain a(288) = 3*2*2 = 12. - _Antti Karttunen_, Oct 13 2021 Consider n = 11945934 = 2*3*3*3*7*11*13*13*17. Its primorial inflation is A108951(11945934) = 96478365991115908800000 = 2^9 * 3^8 * 5^5 * 7^5 * 11^4 * 13^3 * 17^1. Applying A000188 to this halves each exponent (floored down if the exponent is odd), leaving the factors 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 = 2497294800. Then applying A319626 to this number retains the largest prime factor (and its exponent), and subtracts from the exponent of each of the rest of primes the exponent of the next larger prime, so from 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 we get 2^(4-4) * 3^(4-2) * 5^(2-2) * 7^(2-2) * 11^(2-1) * 13^1 = 3^2 * 11^1 * 13^1 = 1287 = a(11945934), which is obtained also by selecting every second prime from the list [17, 13, 13, 11, 7, 3, 3, 3, 2] and taking their product. - _Antti Karttunen_, Oct 15 2021
Links
Crossrefs
A left inverse of A000290.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346700(n).
The odd version is A346701.
The odd non-reverse version is A346703.
The non-reverse version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A346633 adds up the even bisection of standard compositions.
A346698 adds up the even bisection of prime indices.
Programs
-
Mathematica
Table[Times@@Last/@Partition[Reverse[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]],2],{n,100}] (* Gus Wiseman, Oct 13 2021 *)
-
PARI
A329888(n) = A329900(A329602(n));
-
PARI
A329888(n) = if(1==n,n,my(f=factor(n),m=1,p=0); forstep(k=#f~,1,-1,while(f[k,2], m *= f[k,1]^(p%2); f[k,2]--; p++)); (m)); \\ (After Wiseman's new interpretation) - Antti Karttunen, Sep 21 2021
Formula
a(n^2) = n for all n >= 1.
a(n) * A346701(n) = n. - Gus Wiseman, Aug 07 2021
Antti Karttunen, Sep 21 2021
From Antti Karttunen, Oct 13 2021: (Start)
Extensions
Name amended with Gus Wiseman's new interpretation - Antti Karttunen, Oct 13 2021
Comments