cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346745 Decimal expansion of Product_{k>=2} (1 - 1/k^12).

Original entry on oeis.org

9, 9, 9, 7, 5, 3, 9, 1, 3, 9, 2, 1, 8, 9, 3, 2, 5, 6, 0, 0, 3, 4, 4, 8, 5, 7, 0, 6, 4, 1, 9, 0, 9, 7, 2, 7, 1, 8, 0, 3, 3, 9, 7, 1, 1, 4, 7, 2, 6, 0, 9, 9, 5, 3, 7, 2, 5, 5, 6, 3, 1, 3, 8, 7, 4, 0, 7, 6, 0, 1, 0, 3, 6, 5, 7, 8, 4, 2, 5, 7, 0, 7, 2, 8, 6, 9, 5
Offset: 0

Views

Author

Sean A. Irvine, Jul 31 2021

Keywords

Examples

			0.999753913921893256003448570641909727180...
		

Crossrefs

Programs

  • Maple
    evalf(sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5), 120); # Vaclav Kotesovec, Aug 01 2021
  • Mathematica
    RealDigits[Sinh[Pi]*Cosh[Pi*Sqrt[3]/2]^2*(Cosh[Pi] - Cos[Pi*Sqrt[3]])/(24*Pi^5), 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(12*j))/j)) \\ Vaclav Kotesovec, Aug 01 2021

Formula

Equals sinh(Pi) * cosh(Pi*sqrt(3)/2)^2 * (cosh(Pi) - cos(Pi*sqrt(3))) / (24*Pi^5).
Equals exp(Sum_{j>=1} (1 - zeta(12*j))/j). - Vaclav Kotesovec, Aug 01 2021