cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346778 Least k >= 1 such that {b(1), b(2), ..., b(k)} = {n, n-1, ..., n-k+1} and b(k+1) = n-k where b(1..n) is row n of A088643, or k = 0 if no such k >= 1 exists.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 6, 12, 1, 1, 4, 6, 1, 8, 1, 1, 4, 1, 6, 22, 1, 9, 10, 1, 1, 4, 6, 1, 8, 1, 1, 4, 6, 1, 8, 1, 18, 9, 1, 9, 10, 16, 1, 18, 1, 1, 4, 1, 1, 4, 1, 6, 12, 11, 27, 14, 62, 1, 17, 1, 18, 18, 1, 1, 4, 6, 8, 10, 1, 1, 4, 6, 1, 8, 19
Offset: 1

Views

Author

Sean A. Irvine, Aug 03 2021

Keywords

Comments

Equivalently, least k such that {b(1), b(2), ..., b(k)} = {n, n-1, ..., n-k+1} and {b(1), b(2), ..., b(k), b(k+1)} = {n, n-1, ..., n-k+1, n-k}.
Since any row n of A088643 is a permutation of [1..n] having 1 as last term (conjectured), one always has a(n) <= n - 1. - M. F. Hasler, Aug 04 2021

Crossrefs

Programs

  • Mathematica
    (* t is A088643 *)
    t[n_, 1] := n;
    t[n_, k_] := t[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + t[n, k-1]] && FreeQ[Table[t[n, j], {j, 1, k-1}], m], Return[m]]];
    a[n_] := If[n == 1, 0, Module[{r, g}, r = Table[t[n, k], {k, 1, n}]; For[g = 1, g <= n-1, g++, If[Union@r[[1 ;; g]] == Range[n-g+1, n] && r[[g+1]] == n-g, Return[g]]]]];
    Table[a[n], {n, 1, 400}] (* Jean-François Alcover, Aug 11 2022, after M. F. Hasler *)
  • PARI
    apply( {A346778(n, r=A088643_row(n))=for(g=1, n-1, Set(r[1..g])==[n-g+1..n] && r[g+1]==n-g && return(g))}, [1..99]) \\ M. F. Hasler, Aug 04 2021

Extensions

Definition corrected by M. F. Hasler, Aug 03 2021