A346778 Least k >= 1 such that {b(1), b(2), ..., b(k)} = {n, n-1, ..., n-k+1} and b(k+1) = n-k where b(1..n) is row n of A088643, or k = 0 if no such k >= 1 exists.
0, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 6, 12, 1, 1, 4, 6, 1, 8, 1, 1, 4, 1, 6, 22, 1, 9, 10, 1, 1, 4, 6, 1, 8, 1, 1, 4, 6, 1, 8, 1, 18, 9, 1, 9, 10, 16, 1, 18, 1, 1, 4, 1, 1, 4, 1, 6, 12, 11, 27, 14, 62, 1, 17, 1, 18, 18, 1, 1, 4, 6, 8, 10, 1, 1, 4, 6, 1, 8, 19
Offset: 1
Keywords
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
- Sean A. Irvine, Java program (github)
- Peter Munn, Plot of sequence terms as a proportion of n
Programs
-
Mathematica
(* t is A088643 *) t[n_, 1] := n; t[n_, k_] := t[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + t[n, k-1]] && FreeQ[Table[t[n, j], {j, 1, k-1}], m], Return[m]]]; a[n_] := If[n == 1, 0, Module[{r, g}, r = Table[t[n, k], {k, 1, n}]; For[g = 1, g <= n-1, g++, If[Union@r[[1 ;; g]] == Range[n-g+1, n] && r[[g+1]] == n-g, Return[g]]]]]; Table[a[n], {n, 1, 400}] (* Jean-François Alcover, Aug 11 2022, after M. F. Hasler *)
-
PARI
apply( {A346778(n, r=A088643_row(n))=for(g=1, n-1, Set(r[1..g])==[n-g+1..n] && r[g+1]==n-g && return(g))}, [1..99]) \\ M. F. Hasler, Aug 04 2021
Extensions
Definition corrected by M. F. Hasler, Aug 03 2021
Comments