cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346837 Table read by rows, coefficients of the determinant polynomials of the generalized tangent matrices.

Original entry on oeis.org

1, 0, 1, -1, 0, -1, -2, -1, 0, -1, 1, 0, 6, 0, 1, -4, 1, 12, 6, 0, 1, -1, 0, -15, 0, -15, 0, -1, -14, -17, 12, 1, -30, -15, 0, -1, 1, 0, 28, 0, 70, 0, 28, 0, 1, -40, -63, 72, 156, 40, 6, 56, 28, 0, 1
Offset: 0

Views

Author

Peter Luschny, Sep 11 2021

Keywords

Comments

The generalized tangent matrix M(n, k) is an N X N matrix defined for n in [1..N-1] and for k in [0..n-1] with h = floor((N+1)/2) as:
M[n - k, k + 1] = if n < h then 1 otherwise -1,
M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
and the indeterminate x in the main antidiagonal.
The tangent matrix M(n, k) as defined in A346831 is the special case which arises from setting x = 0. The determinant of a generalized tangent matrix M is a polynomial which we call the determinant polynomial of M.

Examples

			Table starts:
[0]   1;
[1]   0,   1;
[2]  -1,   0,  -1;
[3]  -2,  -1,   0,  -1;
[4]   1,   0,   6,   0,   1;
[5]  -4,   1,  12,   6,   0,   1;
[6]  -1,   0, -15,   0, -15,   0, -1;
[7] -14, -17,  12,   1, -30, -15,  0, -1;
[8]   1,   0,  28,   0,  70,   0, 28,  0, 1;
[9] -40, -63,  72, 156,  40,   6, 56, 28, 0, 1.
.
The first few generalized tangent matrices:
1       2          3              4                  5
---------------------------------------------------------------
x;   -1  x;    1  -1  x;    1  -1  -1   x;   1   1  -1  -1   x;
      x  1;   -1   x  1;   -1  -1   x   1;   1  -1  -1   x   1;
               x   1  1;   -1   x   1   1;  -1  -1   x   1   1;
                            x   1   1  -1;  -1   x   1   1   1;
                                             x   1   1   1  -1;
		

Crossrefs

Cf. A011782 (row sums modulo sign), A347596 (alternating row sums), A346831.

Programs

  • Maple
    GeneralizedTangentMatrix := proc(N) local M, H, n, k;
       M := Matrix(N, N); H := iquo(N + 1, 2);
       for n from 1 to N - 1 do for k from 0 to n - 1 do
           M[n - k, k + 1] := `if`(n < H, 1, -1);
           M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
    od od; for k from 1 to N do M[k, N-k+1] := x od;
    M end:
    A346837Row := proc(n) if n = 0 then return 1 fi;
       GeneralizedTangentMatrix(n):
       LinearAlgebra:-Determinant(%);
       seq(coeff(%, x, k), k = 0..n) end:
    seq(A346837Row(n), n = 0..9);
  • Mathematica
    GeneralizedTangentMatrix[N_] := Module[{M, H, n, k},
       M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
       For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
          M[[n - k, k + 1]] = If[n < H, 1, -1];
          M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]];
          For[k = 1, k <= N, k++, M[[k, N - k + 1]] = x]; M];
    A346837Row[n_] := If[n == 0, {1}, CoefficientList[ Det[
       GeneralizedTangentMatrix[n]], x]];
    Table[A346837Row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)