A346865 Sum of divisors of the n-th hexagonal number.
1, 12, 24, 56, 78, 144, 112, 360, 234, 360, 384, 672, 434, 960, 720, 992, 864, 1872, 760, 2352, 1344, 1584, 1872, 2880, 1767, 3024, 2160, 4032, 2400, 4320, 1984, 6552, 4032, 3672, 4608, 6552, 2812, 7440, 5376, 7200, 5082, 8064, 4752, 10080, 7020, 8064, 6144
Offset: 1
Keywords
Examples
a(3) = 24 because the sum of divisors of the third hexagonal number (i.e., 15) is 1 + 3 + 5 + 15 = 24. On the other hand we can see that in the main diagonal of every diagram the smallest Dyck path has a valley and the largest Dyck path has a peak as shown below. Illustration of initial terms: ------------------------------------------------------------------------- n H(n) a(n) Diagram ------------------------------------------------------------------------- _ _ _ _ 1 1 1 |_| | | | | | | | | | | | | _ _| | | | | | | _| | | | | _ _ _| _| | | | | 2 6 12 |_ _ _ _| | | | | | | | | _ _ _|_| | | _ _| | | | | _| | | _| _| | | |_ _| | | | | | _ _ _ _ _ _ _ _| _ _ _ _ _| | 3 15 24 |_ _ _ _ _ _ _ _| | _ _ _ _ _| | | _ _| | _ _| _ _| | _| _| _| | _| _ _ _| | | _ _ _| | | | | | | _ _ _ _ _ _ _ _ _ _ _ _ _ _| | 4 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| . Column H gives the nonzero hexagonal numbers (A000384). a(n) is also the area (and the number of cells) of the n-th diagram. For n = 3 the sum of the regions (or parts) of the third diagram is 8 + 8 + 8 = 24, so a(3) = 24. For more information see A237593.
Crossrefs
Bisection of A074285.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors).
Programs
-
Mathematica
a[n_] := DivisorSigma[1, n*(2*n - 1)]; Array[a, 50] (* Amiram Eldar, Aug 18 2021 *)
-
PARI
a(n) = sigma(n*(2*n-1)); \\ Michel Marcus, Aug 18 2021
-
Python
from sympy import divisors def a(n): return sum(divisors(n*(2*n - 1))) print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Aug 20 2021
Formula
Sum_{k=1..n} a(k) ~ 4*n^3/3. - Vaclav Kotesovec, Aug 18 2021
Comments