A346867 Sum of divisors of the numbers that have middle divisors.
1, 3, 7, 12, 15, 13, 28, 24, 31, 39, 42, 60, 31, 56, 72, 63, 48, 91, 90, 96, 78, 124, 57, 93, 120, 120, 168, 104, 127, 144, 144, 195, 96, 186, 121, 224, 180, 234, 112, 252, 171, 156, 217, 210, 280, 216, 248, 182, 360, 133, 312, 255, 252, 336, 240, 336, 168, 403, 372, 234
Offset: 1
Keywords
Examples
a(4) = 12 because the sum of divisors of the fourth number that has middle divisors (i.e., 6) is 1 + 2 + 3 + 6 = 12. On the other hand we can see that in the main diagonal of every diagram the width is >= 1 as shown below. Illustration of initial terms: m(n) = A071562(n). . n m(n) a(n) Diagram . _ _ _ _ _ _ _ _ _ _ _ _ 1 1 1 |_| | | | | | | | | | | | | | | | | | | | 2 2 3 |_ _|_| | | | | | | | | | | | | | | | | | _ _| _|_| | | | | | | | | | | | | | | | 3 4 7 |_ _ _| _|_| | | | | | | | | | | | | | _ _ _| _| _ _|_| | | | | | | | | | | | 4 6 12 |_ _ _ _| _| | _ _ _| | | | | | | | | | | _ _ _ _| |_ _|_| _ _| | | | | | | | | | 5 8 15 |_ _ _ _ _| _| | _ _ _|_| | | | | | | | 6 9 13 |_ _ _ _ _| | _|_| | _ _ _|_| | | | | | | _ _| _| | _ _ _|_| | | | _ _ _ _ _ _| | _| _| _| | _ _ _ _| | | 7 12 28 |_ _ _ _ _ _ _| |_ _| _| _ _| | _ _ _ _ _| | | _ _| _| _| | _ _ _ _| _ _ _ _ _ _ _ _| | | | _ _| | 8 15 24 |_ _ _ _ _ _ _ _| | _ _| _ _|_| | 9 16 31 |_ _ _ _ _ _ _ _ _| | _ _| _| _ _| _ _ _ _ _ _ _ _ _| | | | _| 10 18 39 |_ _ _ _ _ _ _ _ _ _| | _ _| _| _ _ _ _ _ _ _ _ _ _| | | | 11 20 42 |_ _ _ _ _ _ _ _ _ _ _| | _ _ _| | | | | _ _ _ _ _ _ _ _ _ _ _ _| | 12 24 60 |_ _ _ _ _ _ _ _ _ _ _ _ _| . The n-th diagram has the property that at least it shares a vertex with the (n+1)-st diagram.
Crossrefs
Cf. A000203, A067742, A071090, A071561, A071562, A237591, A237593, A240542, A245092, A249351, A262626, A281007, A299777, A346864.
Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346868 (of numbers with no middle divisors).
Programs
-
Mathematica
s[n_] := Module[{d = Divisors[n]}, If[AnyTrue[d, Sqrt[n/2] <= # < Sqrt[n*2] &], Plus @@ d, 0]]; Select[Array[s, 150], # > 0 &] (* Amiram Eldar, Aug 19 2021 *)
-
PARI
is(n) = fordiv(n, d, if(d^2>=n/2 && d^2<2*n, return(1))); 0 ; \\ A071562 apply(sigma, select(is, [1..200])) \\ Michel Marcus, Aug 19 2021
Comments