cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346917 Numbers that are a sum of the cubes of four primes, not necessarily distinct.

Original entry on oeis.org

32, 51, 70, 89, 108, 149, 168, 187, 206, 266, 285, 304, 367, 383, 386, 402, 405, 424, 484, 500, 503, 522, 601, 620, 702, 718, 721, 740, 819, 838, 936, 1037, 1056, 1154, 1355, 1372, 1374, 1393, 1412, 1472, 1491, 1510, 1589, 1608, 1690, 1706, 1709, 1728, 1807, 1826
Offset: 1

Views

Author

Amiram Eldar, Aug 07 2021

Keywords

Comments

Roth (1951) proved that the number of terms below x is >> x/log(x)^8.
Ren (2001) proved that this sequence has a positive lower density.
The lower density was proven to be larger than 0.003125 (Ren, 2003), 0.005776 (Liu, 2012), and 0.009664 (Elsholtz and Schlage-Puchta, 2019).

Examples

			a(1) = 32 = 2^3 + 2^3 + 2^3 + 2^3.
a(2) = 51 = 2^3 + 2^3 + 2^3 + 3^3.
a(3) = 70 = 2^3 + 2^3 + 3^3 + 3^3.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{s = Select[Range[Floor @ Surd[max, 3]], PrimeQ]}, Select[Union[Plus @@@ (Tuples[s, 4]^3)], # <= max &]]; seq[2000]
  • PARI
    list(lim)=my(v=List(), P=apply(p->p^3,primes(sqrtnint(lim\=1,3)))); foreach(P,p, foreach(P,q, foreach(P,r, my(s=p+q+r,t); for(i=1,#P, t=s+P[i]; if(t>lim, break); listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Aug 09 2021
    
  • Python
    from sympy import integer_nthroot, primerange
    from itertools import combinations_with_replacement as cwr
    def aupto(limit):
        cubes = [p**3 for p in primerange(2, integer_nthroot(limit, 3)[0])]
        return sorted(sum(c) for c in cwr(cubes, 4) if sum(c) <= limit)
    print(aupto(2000)) # Michael S. Branicky, Apr 09 2022