cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353249 Primes that are the sum of the cubes of four primes, not necessarily distinct.

Original entry on oeis.org

89, 149, 367, 383, 503, 601, 1709, 2221, 2357, 4001, 4937, 5171, 6599, 6883, 7019, 7237, 7243, 7583, 9091, 10177, 11261, 11807, 14747, 15923, 16693, 17431, 24413, 24767, 25673, 26539, 27059, 30169, 32587, 34739, 43517, 48731, 51031, 51347, 53201, 53323, 53699, 54133, 59617
Offset: 1

Views

Author

Michel Marcus, Apr 08 2022

Keywords

Examples

			89 is a term because 2^3 + 3^3 + 3^3 + 3^3 = 89.
15923 is a term because 2^3 + 13^3 + 19^3 + 19^3 = 15923.
		

Crossrefs

Primes in A346917.
Cf. A123597.

Programs

  • Maple
    q:= proc(n, t) option remember; `if`(n=0, is(t=0), t>0 and
          ormap(p-> isprime(p) and q(n-p^3, t-1), [$2..iroot(n, 3)]))
        end:
    select(x-> isprime(x) and q(x, 4), [$1..60000])[];  # Alois P. Heinz, Apr 08 2022
  • Mathematica
    seq[max_] := Module[{s = Select[Range[Floor@Surd[max, 3]], PrimeQ]}, Select[Union[Plus @@@ (Tuples[s, 4]^3)], # <= max && PrimeQ[#] &]]; seq[60000] (* Amiram Eldar, Apr 08 2022 *)
  • PARI
    isok(p) = {if (isprime(p) && (p > 24), my(P=primes(primepi(sqrtn(p-24, 3)+1))); for (i=1, #P, for (j=i, #P, for (k=j, #P, for (n=k, #P, if (P[i]^3 + P[j]^3 + P[k]^3 + P[n]^3 == p, return (1)););););););}

A353263 Primes whose square is the sum of the cubes of four primes, not necessarily distinct.

Original entry on oeis.org

1193, 1949, 5639, 7907, 8501, 10301, 20101, 20939, 29137, 30091, 34403, 65173, 68567, 70249, 70537, 76801, 84163, 105943, 109147, 116483, 153247, 161753, 169943, 171733, 175829, 180563, 208589, 214483, 222197, 224969, 242483, 261427, 280507, 313933, 317327, 319883
Offset: 1

Views

Author

Michel Marcus, Apr 09 2022

Keywords

Comments

The sum must contain 2^3, else it will be even, hence not prime. - Michael S. Branicky, Apr 10 2022

Examples

			1193 is a term because 2^3 + 29^3 + 47^3 + 109^3 = 1423249 = 1193^2.
		

Crossrefs

Square roots of the intersection of A346917 and A001248.
Cf. A353249.

Programs

  • PARI
    list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (issquare(t, &rr) && isprime(rr), listput(v, rr)))))); v = Set(v); \\ after A346917

Extensions

a(11) and beyond from Michael S. Branicky, Apr 09 2022

A353291 Integers whose cube is the sum of the cubes of four primes, not necessarily distinct.

Original entry on oeis.org

12, 66, 336, 504, 588, 602, 756, 1092, 1248, 1470, 1638, 1848, 2142, 2184, 2289, 2394, 2772, 3094, 3192, 3276, 3885, 3948, 4242, 4284, 4368, 4410, 4578, 4620, 4788, 4830, 4998, 5166, 5460, 5544, 5586, 5670, 5754, 6006, 6216, 6552, 6636, 6708, 6804, 6930, 7014
Offset: 1

Views

Author

Michel Marcus, Apr 09 2022

Keywords

Examples

			12 is a term because 3^3 + 3^3 + 7^3 + 11^3 = 1728 = 12^3.
		

Crossrefs

Cube roots of the intersection of A346917 and A000578.

Programs

  • PARI
    list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (ispower(t, 3, &rr), listput(v, rr)))))); v = Set(v);

Extensions

a(8) and beyond from Michael S. Branicky, Apr 09 2022
Showing 1-3 of 3 results.