A346956 Numbers k such that A000203(k) and A007955(k) are both divisible by A187680(k).
4, 9, 14, 16, 25, 38, 42, 49, 51, 55, 62, 64, 70, 81, 86, 92, 96, 117, 121, 130, 134, 138, 140, 158, 159, 161, 168, 169, 182, 206, 209, 234, 254, 256, 266, 267, 278, 282, 284, 289, 302, 322, 326, 351, 361, 376, 390, 398, 408, 410, 422, 426, 434, 446, 477, 508, 529, 532, 534, 542, 551, 566, 590
Offset: 1
Keywords
Examples
a(3) = 14 is a term because A000203(14) = 1+2+7+14 = 24, A007955(14) = 1*2*7*14 = 196, A187680(14) = 196 mod 24 = 4, and both 24 and 196 are divisible by 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local d,s,p,r; d:= numtheory:-divisors(n); s:= convert(d,`+`); p:= convert(d,`*`); r:= p mod s; r <> 0 and p mod r = 0 and s mod r = 0 end proc: select(filter, [$1..1000]);
-
Mathematica
okQ[n_] := Module[{d, s, p, m}, d = Divisors[n]; s = Total[d]; p = Times @@ d; m = Mod[p, s]; If[m == 0, False, Divisible[s, m] && Divisible[p, m]]]; Select[Range[1000], okQ] (* Jean-François Alcover, May 16 2023 *)
-
PARI
isok(k) = my(d=divisors(k), s=vecsum(d), p=vecprod(d), m=p % s); (m>0) && !(s%m) && !(p%m); \\ Michel Marcus, Aug 09 2021
Comments