cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347010 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(2) with minimal polynomial of degree k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 2, 14, 0, 2, 98, 412, 0, 2, 1542, 13160, 50832, 0, 2, 34782, 1147744, 6854720, 25517184, 0, 2, 1908734, 260411904, 2544075264, 14153094144, 51759986688, 0, 2, 166738046, 107691724672, 2985421682688, 21570911944704, 116285097148416, 422000664182784
Offset: 0

Views

Author

Geoffrey Critzer, Aug 10 2021

Keywords

Examples

			  1,
  0, 2,
  0, 2,   14,
  0, 2,   98,   412,
  0, 2, 1542, 13160, 50832
		

Crossrefs

Cf. A002416 (row sums), A346082 (main diagonal).

Programs

  • Mathematica
    nn = 8; q = 2; b[p_, i_] := Count[p, i];d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; \[Nu] =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; L = Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]; g[u_, v_, deg_] :=
    Total[Map[v^(Max[Prepend[#, 0]] deg) u^(deg Total[#])/aut[deg, #] &,
       L]]; Table[Take[(Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[g[u, v, deg]^\[Nu][[deg]], {deg, 1, nn}], {u, 0, nn}], {u, v}])[[n]], n], {n, 1, nn}] // Grid