A347030 a(n) = 1 + Sum_{k=2..n} (-1)^k * a(floor(n/k)).
1, 2, 1, 3, 2, 1, 0, 4, 4, 3, 2, 0, -1, -2, -1, 7, 6, 6, 5, 3, 4, 3, 2, -2, -2, -3, -3, -5, -6, -5, -6, 10, 11, 10, 11, 11, 10, 9, 10, 6, 5, 6, 5, 3, 3, 2, 1, -7, -7, -7, -6, -8, -9, -9, -8, -12, -11, -12, -13, -11, -12, -13, -13, 19, 20, 21, 20, 18, 19, 20, 19, 19, 18, 17, 17
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..8191
- Ilya Gutkovskiy, Scatterplot of a(n) up to n=10000
Programs
-
Mathematica
a[n_] := a[n] = 1 + Sum[(-1)^k a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 1, 75}] nmax = 75; A[] = 0; Do[A[x] = (1/(1 - x)) (x + Sum[(-1)^k (1 - x^k) A[x^k], {k, 2, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A347030(n): if n <= 1: return n c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j&1)*(-1 if j&1 else 1)*A347030(k1) j, k1 = j2, n//j2 return c+(n+1-j&1)*(-1 if j&1 else 1) # Chai Wah Wu, Apr 04 2023
Formula
G.f. A(x) satisfies: A(x) = (1/(1 - x)) * (x + Sum_{k>=2} (-1)^k * (1 - x^k) * A(x^k)).
Comments