cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347038 Primes p such that there are no solutions to d(k+p) = sigma(k).

Original entry on oeis.org

29, 37, 41, 53, 67, 89, 101, 109, 113, 127, 137, 151, 157, 173, 181, 197, 227, 229, 233, 257, 269, 277, 281, 293, 313, 349, 373, 389, 401, 409, 421, 439, 461, 557, 587, 593, 601, 613, 617, 641, 643, 653, 661, 673, 677, 701, 709, 739, 761, 773, 787, 821, 829
Offset: 1

Views

Author

Angad Singh, Aug 12 2021

Keywords

Comments

If p is not in the sequence and d(k+p) = sigma(k), then k <= 1+2*sqrt(p). Proof: We have d(m) <= 2*sqrt(m) (see formula in A000005), so 2*sqrt(k+p) >= d(k+p) = sigma(k) >= k+1 (if k > 1). After squaring and simplifying, we get k <= 1+2*sqrt(p). - Pontus von Brömssen, Aug 20 2021

Crossrefs

Programs

  • Maple
    filter:= proc(p) isprime(p) and not ormap(k -> numtheory:-tau(k+p) = numtheory:-sigma(k), [$1 .. 1 + 2*isqrt(p)]) end proc:
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Aug 06 2025
  • Python
    from sympy import divisor_count as d, divisor_sigma as sigma, primerange
    from math import isqrt
    def A347038_list(pmax):
        a = []
        for p in primerange(2, pmax + 1):
            if not any(d(k + p) == sigma(k) for k in range(1, 2 + isqrt(4 * p))):
                a.append(p)
        return a  # Pontus von Brömssen, Aug 20 2021