A347038 Primes p such that there are no solutions to d(k+p) = sigma(k).
29, 37, 41, 53, 67, 89, 101, 109, 113, 127, 137, 151, 157, 173, 181, 197, 227, 229, 233, 257, 269, 277, 281, 293, 313, 349, 373, 389, 401, 409, 421, 439, 461, 557, 587, 593, 601, 613, 617, 641, 643, 653, 661, 673, 677, 701, 709, 739, 761, 773, 787, 821, 829
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(p) isprime(p) and not ormap(k -> numtheory:-tau(k+p) = numtheory:-sigma(k), [$1 .. 1 + 2*isqrt(p)]) end proc: select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Aug 06 2025
-
Python
from sympy import divisor_count as d, divisor_sigma as sigma, primerange from math import isqrt def A347038_list(pmax): a = [] for p in primerange(2, pmax + 1): if not any(d(k + p) == sigma(k) for k in range(1, 2 + isqrt(4 * p))): a.append(p) return a # Pontus von Brömssen, Aug 20 2021
Comments