A347041 Stirling transform of pi (A000720).
0, 0, 1, 5, 21, 88, 389, 1852, 9525, 52632, 310141, 1936489, 12749204, 88149847, 637769490, 4812457992, 37763509549, 307453610201, 2592851608305, 22626572045811, 204197274002794, 1905132039608335, 18370391387293756, 183001650861913887, 1882207129695280320
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..575
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, numtheory[pi](m), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..27);
Formula
G.f.: Sum_{k>=0} pi(k)*x^k / Product_{j=1..k} (1-j*x).
E.g.f.: Sum_{k>=0} pi(k)*(exp(x)-1)^k/k!.
a(n) = Sum_{k=0..n} Stirling2(n,k)*pi(k).