cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347042 Number of divisors d > 1 of n such that bigomega(d) divides bigomega(n), where bigomega = A001222.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 5, 2, 3, 2, 3, 1, 4, 1, 2, 3, 3, 3, 6, 1, 3, 3, 5, 1, 4, 1, 3, 3, 3, 1, 3, 2, 3, 3, 3, 1, 5, 3, 5, 3, 3, 1, 8, 1, 3, 3, 4, 3, 4, 1, 3, 3, 4, 1, 3, 1, 3, 3, 3, 3, 4, 1, 3, 3, 3, 1, 8, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 17 2021

Keywords

Examples

			The a(n) divisors for selected n:
  n = 1:   2:   4:   6:   24:  30:  36:  60:  96:  144: 210: 216: 240: 360:
      ---------------------------------------------------------------------
      {}   2    2    2    2    2    2    2    2    2    2    2    2    2
                4    3    3    3    3    3    3    3    3    3    3    3
                     6    4    5    4    4    4    4    5    4    4    4
                          6    30   6    5    6    6    6    6    5    5
                          24        9    6    8    8    7    8    6    6
                                    36   10   12   9    10   9    8    8
                                         15   96   12   14   12   10   9
                                         60        18   15   18   12   10
                                                   144  21   27   15   12
                                                        35   216  20   15
                                                        210       30   18
                                                                  240  20
                                                                       30
                                                                       45
                                                                       360
		

Crossrefs

Positions of 1's are A000040.
The smallest of these divisors is A020639
The case of divisors with half bigomega is A345957 (rounded: A096825).
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors, also called bigomega.
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors.

Programs

  • Mathematica
    Table[Length[Select[Rest[Divisors[n]],IntegerQ[PrimeOmega[n]/PrimeOmega[#]]&]],{n,100}]
  • PARI
    a(n) = my(bn=bigomega(n)); sumdiv(n, d, if (d>1, !(bn % bigomega(d)))); \\ Michel Marcus, Aug 18 2021
    
  • Python
    from sympy import divisors, primeomega
    def a(n):
        bigomegan = primeomega(n)
        return sum(bigomegan%primeomega(d) == 0 for d in divisors(n)[1:])
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Aug 18 2021
    
  • Python
    from sympy import factorint, divisors
    from sympy.utilities.iterables import multiset_combinations
    def A347042(n):
        fs = factorint(n,multiple=True)
        return sum(len(list(multiset_combinations(fs,d))) for d in divisors(len(fs),generator=True)) # Chai Wah Wu, Aug 21 2021