A347049 Number of odd-length ordered factorizations of n with integer alternating product.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 14, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 3, 15, 1, 1, 1, 3, 1, 1, 1, 24, 1, 1, 3, 3, 1, 1, 1, 14, 4, 1, 1, 7, 1, 1, 1, 5, 1, 7, 1, 3, 1, 1, 1, 24, 1, 3, 3, 11
Offset: 1
Keywords
Examples
The a(n) ordered factorizations for n = 2, 8, 12, 16, 24, 32, 36, 48: 2 8 12 16 24 32 36 48 2*2*2 2*2*3 2*2*4 2*2*6 2*2*8 2*2*9 2*4*6 3*2*2 2*4*2 3*2*4 2*4*4 2*3*6 3*2*8 4*2*2 4*2*3 4*2*4 2*6*3 3*4*4 6*2*2 4*4*2 3*2*6 4*2*6 8*2*2 3*3*4 4*4*3 2*2*2*2*2 3*6*2 6*2*4 4*3*3 6*4*2 6*2*3 8*2*3 6*3*2 12*2*2 9*2*2 2*2*12 2*2*2*2*3 2*2*3*2*2 3*2*2*2*2
Links
Crossrefs
Positions of 2's appear to be A030078.
Positions of 3's appear to be A054753.
Positions of 1's appear to be A167207.
The even-length version is A347048.
The unordered version is A347441, with same reverse version.
Allowing any length gives A347463.
A347439 = factorizations with integer reciprocal alternating product.
A347457 lists Heinz numbers of partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347708 counts possible alternating products of odd-length factorizations.
Programs
-
Mathematica
ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[ordfacs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
-
PARI
A347049(n, m=n, ap=1, e=0) = if(1==n,(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1, A347049(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
Extensions
Data section extended up to a(100) by Antti Karttunen, Jul 28 2024
Comments