A347056 Triangle read by rows: T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6, 0 <= k <= n.
1, 3, 4, 6, 16, 10, 10, 40, 50, 20, 15, 80, 150, 120, 35, 21, 140, 350, 420, 245, 56, 28, 224, 700, 1120, 980, 448, 84, 36, 336, 1260, 2520, 2940, 2016, 756, 120, 45, 480, 2100, 5040, 7350, 6720, 3780, 1200, 165, 55, 660, 3300, 9240, 16170, 18480, 13860, 6600, 1815, 220
Offset: 0
Examples
T(6,2) = (6+1)*(6+2)*(2+3)*binomial(6,2)/6 = 7*8*5*15/6 = 700. The triangle T begins: n \ k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 3 4 2: 6 16 10 3: 10 40 50 20 4: 15 80 150 120 35 5: 21 140 350 420 245 56 6: 28 224 700 1120 980 448 84 7: 36 336 1260 2520 2940 2016 756 120 8: 45 480 2100 5040 7350 6720 3780 1200 165 9: 55 660 3300 9240 16170 18480 13860 6600 1815 220 10: 66 880 4950 15840 32340 44352 41580 26400 10890 2640 286 ... - _Wolfdieter Lang_, Sep 30 2021
Links
Crossrefs
Programs
-
PARI
T(p,n,k)=if(n==0&&p==0,1,((k+p)*(n+p-1)!)/(k!*(n-k)!*p!)) for(n=0,9,for(k=0,n,print1(T(3,n,k),", ")))
Formula
T(n,k) = (n+1)*(n+2)*(k+3)*binomial(n,k)/6.
G.f. column k: x^k*binomial(k+3, 3)/(1 - x)^(k+3), for k >= 0. - Wolfdieter Lang, Sep 30 2021
Comments