A348713 Numbers whose divisors can be partitioned into two disjoint sets with equal arithmetic mean.
6, 20, 24, 30, 42, 48, 54, 56, 60, 66, 70, 72, 78, 84, 88, 90, 96, 102, 108, 114, 120, 126, 132, 135, 138, 140, 150, 156, 160, 168, 174, 180, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 228, 230, 234, 240, 246, 252, 258, 260, 264, 270, 273, 276
Offset: 1
Keywords
Examples
6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets, {3} and {1, 2, 6}, whose arithmetic means are both 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..872
Programs
-
Mathematica
q[n_] := Module[{d = Divisors[n], nd, m, s, subs, ans = False}, nd = Length[d]; m = Plus @@ d/nd; subs = Subsets[d]; Do[s = subs[[k]]; If[0 < Length[s] < nd && Mean[s] == m, ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[300], q]
Comments