A347068 Rectangular array (T(n,k)), by downward antidiagonals: T(n,k) = position of k in the ordering of {h*r^m, r = 1/(golden ratio), h >= 1, 0 <= m <= n}.
2, 5, 4, 7, 10, 8, 10, 14, 18, 14, 13, 20, 26, 31, 25, 15, 26, 36, 46, 53, 42, 18, 30, 47, 63, 79, 88, 71, 20, 36, 55, 81, 107, 132, 146, 117, 23, 40, 65, 96, 136, 178, 219, 239, 193, 26, 46, 73, 112, 162, 225, 294, 359, 391, 315, 28, 52, 84, 127, 189, 269
Offset: 1
Examples
Corner: 2, 5, 7, 10, 13, 15, 18, 20, 23, ... 4, 10, 14, 20, 26, 30, 36, 40, 46, ... 8, 18, 26, 36, 47, 55, 65, 73, 84, ... 14, 31, 46, 63, 81, 96, 112, 127, 145, ... 25, 53, 79, 107, 136, 162, 189, 215, 244, ... 42, 88, 132, 178, 225, 269, 314, 358, 405, ... 71, 146, 219, 294, 370, 443, 517, 590, 666, ... ...
Programs
-
Mathematica
z = 1000; r = N[(-1+Sqrt[5])/2]; s[m_] := Range[z] r^m; t[0] = s[0]; t[n_] := Sort[Union[s[n], t[n - 1]]] row[n_] := Flatten[Table[Position[t[n], N[k]], {k, 1, z}]] TableForm[Table[row[n], {n, 1, 10}]] (* A347068, array *) w[n_, k_] := row[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A347068, sequence *)
Comments