cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347097 a(1) = 2; and for n > 1, a(n) = A341512(n) + A347096(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 21, 4, 4, 0, 110, 0, 8, 8, 259, 0, 224, 0, 154, 16, 4, 0, 1548, 4, 8, 176, 316, 0, 592, 0, 2445, 8, 4, 16, 4312, 0, 8, 16, 2450, 0, 1216, 0, 382, 640, 12, 0, 15532, 16, 408, 8, 616, 0, 6708, 8, 5064, 16, 4, 0, 12272, 0, 12, 1312, 19543, 16, 1504, 0, 754, 24, 1568, 0, 50561, 0, 8, 832, 1060, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Sum of {the pointwise sum of A341512 and A063524 (1, 0, 0, 0, ...)} and its Dirichlet inverse.
The first negative term is a(5760) = -1223227750.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341512(n) = { my(u=A003961(n)); ((sigma(n)*u) - (n*sigma(u))); };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA341512(n));
    v347096 = DirInverseCorrect(vector(up_to,n,Aux347096(n)));
    A347096(n) = v347096[n];
    A347097(n) = if(1==n,2,A341512(n) + A347096(n));

Formula

a(1) = 2, and for n>1, a(n) = -Sum_{d|n, 1A341512(d) * A347096(n/d).
For all n >= 1, a(A001248(n)) = A001223(n)^2.