cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347097 a(1) = 2; and for n > 1, a(n) = A341512(n) + A347096(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 21, 4, 4, 0, 110, 0, 8, 8, 259, 0, 224, 0, 154, 16, 4, 0, 1548, 4, 8, 176, 316, 0, 592, 0, 2445, 8, 4, 16, 4312, 0, 8, 16, 2450, 0, 1216, 0, 382, 640, 12, 0, 15532, 16, 408, 8, 616, 0, 6708, 8, 5064, 16, 4, 0, 12272, 0, 12, 1312, 19543, 16, 1504, 0, 754, 24, 1568, 0, 50561, 0, 8, 832, 1060, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Sum of {the pointwise sum of A341512 and A063524 (1, 0, 0, 0, ...)} and its Dirichlet inverse.
The first negative term is a(5760) = -1223227750.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341512(n) = { my(u=A003961(n)); ((sigma(n)*u) - (n*sigma(u))); };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA341512(n));
    v347096 = DirInverseCorrect(vector(up_to,n,Aux347096(n)));
    A347096(n) = v347096[n];
    A347097(n) = if(1==n,2,A341512(n) + A347096(n));

Formula

a(1) = 2, and for n>1, a(n) = -Sum_{d|n, 1A341512(d) * A347096(n/d).
For all n >= 1, a(A001248(n)) = A001223(n)^2.

A347098 a(1) = 1; a(n) = -Sum_{d|n, d < n} A336853(n/d) * a(d), where A336853(n) = A003961(n) - n.

Original entry on oeis.org

1, -1, -2, -4, -2, -5, -4, -10, -12, -7, -2, -1, -4, -11, -12, -16, -2, -1, -4, -7, -18, -13, -6, 42, -20, -17, -42, -5, -2, 21, -6, -4, -24, -19, -26, 106, -4, -23, -30, 38, -2, 45, -4, -25, -10, -29, -6, 196, -56, -17, -36, -23, -6, 123, -28, 82, -42, -31, -2, 225, -6, -37, 4, 80, -38, 15, -4, -43, -52, 39, -2, 413
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Dirichlet inverse of the pointwise sum of A336853 and A063524 (1, 0, 0, 0, ...).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    up_to = 16384;
    A336853(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)-n); };
    Aux347098(n) = if(1==n,n,A336853(n));
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA347098(n) = v347098[n];

Formula

a(1) = 1; and for n > 1, a(n) = -Sum_{d|n, d < n} A336853(n/d) * a(d).
For all n >= 1, a(A000040(n)) = -A001223(n).
Showing 1-2 of 2 results.