cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347100 a(n) = phi(A003961(n)) - phi(n), where A003961 is the prime shift towards larger primes, and phi is Euler totient function.

Original entry on oeis.org

0, 1, 2, 4, 2, 6, 4, 14, 14, 8, 2, 20, 4, 14, 16, 46, 2, 34, 4, 28, 28, 14, 6, 64, 22, 20, 82, 48, 2, 40, 6, 146, 28, 20, 36, 108, 4, 26, 40, 92, 2, 68, 4, 52, 96, 34, 6, 200, 68, 64, 40, 72, 6, 182, 32, 156, 52, 32, 2, 128, 6, 42, 164, 454, 48, 76, 4, 76, 68, 96, 2, 336, 6, 44, 128, 96, 60, 104, 4, 292, 446, 44, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2021

Keywords

Comments

Möbius transform of A336853.

Crossrefs

Möbius transform of A336853.
Cf. also A346249, A347098.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; a[n_] := EulerPhi[Times @@ f @@@ FactorInteger[n]] - EulerPhi[n]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    A347100(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (eulerphi(factorback(f))-eulerphi(n)); };
    
  • PARI
    A336853(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)-n); };
    A347100(n) = sumdiv(n,d,moebius(n/d)*A336853(d));

Formula

a(n) = A003972(n) - A000010(n).
a(n) = A337549(n) + A051953(n).
a(n) = Sum_{d|n} A008683(n/d) * A336853(d).
For all n >= 1, a(A000040(n)) = A001223(n).