cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347128 a(n) = A018804(n) / A003557(n), where A018804 is Pillai's arithmetical function.

Original entry on oeis.org

1, 3, 5, 4, 9, 15, 13, 5, 7, 27, 21, 20, 25, 39, 45, 6, 33, 21, 37, 36, 65, 63, 45, 25, 13, 75, 9, 52, 57, 135, 61, 7, 105, 99, 117, 28, 73, 111, 125, 45, 81, 195, 85, 84, 63, 135, 93, 30, 19, 39, 165, 100, 105, 27, 189, 65, 185, 171, 117, 180, 121, 183, 91, 8, 225, 315, 133, 132, 225, 351, 141, 35, 145, 219, 65, 148
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Cf. A003557, A018804, A348494 [= gcd(a(n), A342001(n))], A348496 [= gcd(a(n), A347129(n))].
Cf. also A173557, A347127.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; A347128[n_] := (Times @@ (f @@@ FactorInteger[n]))/(n/Times @@ (First[Transpose[FactorInteger[n]]]));Table[A347128[n], {n, 1, 76}] (* Robert P. P. McKone, Aug 23 2021, after Amiram Eldar *)
  • PARI
    A347128(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i, 1]-1)*f[i, 2] + f[i, 1])); };

Formula

Multiplicative with a(p^e) = ((p-1)*e + p).
a(n) = A018804(n) / A003557(n).