A347137 a(n) = Sum_{d|n} phi(d) * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes, and phi is Euler totient function.
1, 4, 7, 14, 11, 28, 17, 46, 41, 44, 23, 98, 29, 68, 77, 146, 35, 164, 41, 154, 119, 92, 51, 322, 97, 116, 223, 238, 59, 308, 67, 454, 161, 140, 187, 574, 77, 164, 203, 506, 83, 476, 89, 322, 451, 204, 99, 1022, 229, 388, 245, 406, 111, 892, 253, 782, 287, 236, 119, 1078, 127, 268, 697, 1394, 319, 644, 137, 490
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (q = NextPrime[p])^e + (p - 1)*(q^e - p^e)/(q - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A347137(n) = sumdiv(n,d,eulerphi(n/d)*A003961(d));
Formula
a(n) = Sum_{d|n} d * A003972(n/d).
Multiplicative with a(p^e) = q(p)^e + (p-1)*(q(p)^e - p^e)/(q(p) - p), where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Sep 16 2023
Comments