cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347169 Numbers k for which sigma(k)/k = 16/7.

Original entry on oeis.org

42, 3472, 56896, 544635, 234852352, 60129083392, 962070839296, 16140901056979664896, 18609191940988822212582848311676895232
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 20 2021

Keywords

Comments

This sequence will contain terms of the form 7*P, where P is a perfect number (A000396) not divisible by 7. Proof: sigma(7*P)/(7*P) = sigma(7)*sigma(P)/(7*P) = 8*(2*P)/(7*P) = 16/7. QED
Terms ending in "2" or "96" have this form. Example: a(n) = 7*A000396(n) for n = 1, 5, 6, 7, 8, 9 and a(n) = 7*A000396(n+1) for n = 2, 3.

Examples

			544635 is a term, since sigma(544635)/544635 = 1244880/544635 = 16/7.
		

Crossrefs

Subsequence of A005101 and A218409.

Programs

  • Mathematica
    Select[Range[5*10^8], DivisorSigma[1, #]/# == 16/7 &]
    Do[If[DivisorSigma[1, k]/k == 16/7, Print[k]], {k, 5*10^8}]

Extensions

a(8)-a(9) from Michel Marcus, Aug 21 2021