A360163 a(n) is the sum of the square roots of the divisors of n that are odd squares.
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(floor(f[i, 2]/2)+1) - 1)/(f[i, 1] - 1))); }
Formula
a(n) = Sum_{d|n, d odd square} sqrt(d).
a(n) = A069290(n) if n is not a multiple of 4.
Multiplicative with a(2^e) = 1, and a(p^e) = (p^(floor(e/2)+1)-1)/(p-1) for p > 2.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)*(1-2^(1-2*s)).
Sum_{k=1..n} a(k) ~ (n/4) * (log(n) + 3*gamma - 1 + 2*log(2)), where gamma is Euler's constant (A001620).
Comments