cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360163 a(n) is the sum of the square roots of the divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 6, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 8, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 6, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

First differs from A336649 at n = 27.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(floor(f[i, 2]/2)+1) - 1)/(f[i, 1] - 1))); }

Formula

a(n) = Sum_{d|n, d odd square} sqrt(d).
a(n) = (A069290(n) + A347176(n))/2.
a(n) = A069290(n) if n is not a multiple of 4.
Multiplicative with a(2^e) = 1, and a(p^e) = (p^(floor(e/2)+1)-1)/(p-1) for p > 2.
Dirichlet g.f.: zeta(s)*zeta(2*s-1)*(1-2^(1-2*s)).
Sum_{k=1..n} a(k) ~ (n/4) * (log(n) + 3*gamma - 1 + 2*log(2)), where gamma is Euler's constant (A001620).

A360165 a(n) is the sum of the square roots of the unitary divisors of n that are odd squares minus the sum of the square roots of the unitary divisors of n that are even squares.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, 4, 1, 1, -1, 1, 1, 1, -3, 1, 4, 1, -1, 1, 1, 1, 1, 6, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -4, 1, 1, 1, 1, 1, 1, 1, -1, 4, 1, 1, -3, 8, 6, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 4, -7, 1, 1, 1, -1, 1, 1, 1, 4, 1, 1, 6, -1, 1, 1, 1, -3, 10, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A347176.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^(e/2) + 1]; f[2, e_] := If[OddQ[e], 1, 1 - 2^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, if(f[i, 2]%2, 1, 1 - f[i, 1]^(f[i, 2]/2)), if(f[i, 2]%2, 1, f[i, 1]^(f[i, 2]/2) + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d odd square} (-1)^(d+1)*sqrt(d).
a(n) = A360164(n) - 2 * A360162(n).
Multiplicative with a(2^e) = 1 - 2^(e/2) if e is even and 1 otherwise, and for p > 2, a(p^e) = p^(e/2) + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-1)/zeta(3*s-1))*(2^(3*s)-2^(s+2)+2)/(2^(3*s)-2).
Sum_{k=1..n} a(k) ~ (n/Pi^2)*(log(n) + 3*gamma - 1 + 4*log(2) - 3*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).
Showing 1-2 of 2 results.